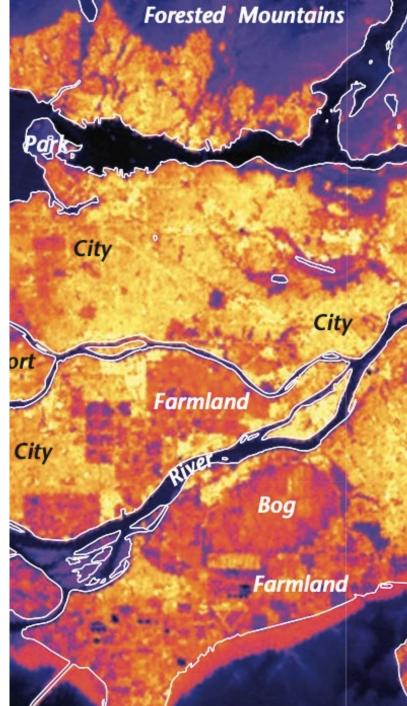


CIVIL-309: URBAN THERMODYNAMICS

Prof. Dolaana Khovalyg
Dr. Kun Lyu

Lecture 02:


Overview of physical parameters.
Urban environment and urban modeling.

EPFL Course Schedule

Lectures (L) 15:15-17:00, practice sessions (P) 17:15-18:00, room INJ218

Week	Date	Time	ID	Topics	Responsible		
1	09.09	2 x 45'	L1	Course overview (content, evaluation, group	DK		
				project). Urban characteristics , Urban Heat Island			
				(UHI) effect.			
		1 x 45'	P1	Exercises based on materials in lecture L1	KL		
2	16.09			No class (holiday)			
3	23.09	2 x 45'	L2	Overview of physical parameters . Urban DK, KL			
				environment and urban modeling.			
		1 x 45'	P2	Workshop on how to use the simulation tool ENVI- KL			
				met (basic functions, geometry input, etc.)			
				Exercises based on materials in lecture L2 [HW]			
4	30.09	2 x 45′	L3	Heat Transfer: Conduction and radiation DK			
		1 x 45'	Р3	Exercises based on materials in lecture L3 KL			
5	07.10	2 x 45'	L4	Heat Transfer: Convection and evaporation DK			
		1 x 45'	P4	Exercises based on materials in lecture L4 KL			
6	14.10	90'	Q	Quiz (open book exam, based on lectures L1-L4) DK, KL			
		1 x 45'	V	Case study site (EPFL Innovation park) visit, DK, KL			
				overview of important urban features			
7	21.10			Fall Break (no classes)			

CONTENT:

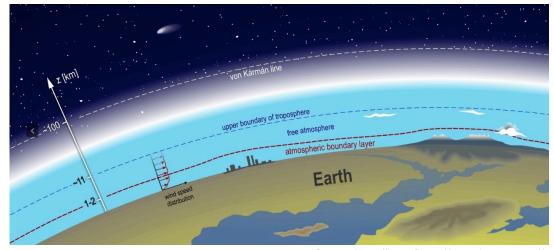
Urban meteorology

- Structure of urban atmosphere
- Micrometeorology
- Winds speed and precipitation

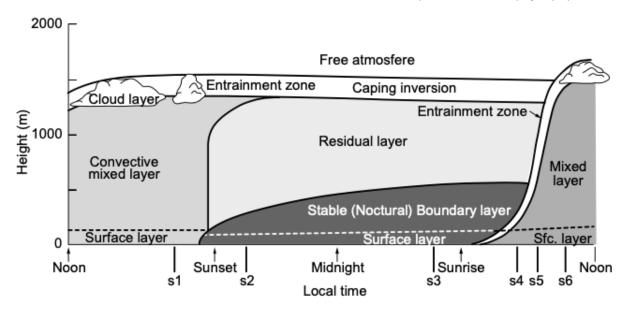
Physical parameters

- Temperatures (air, surface, ground)
- Atmospheric pressure
- Water vapor, moist air, air humidity

III. Case study parameters overview

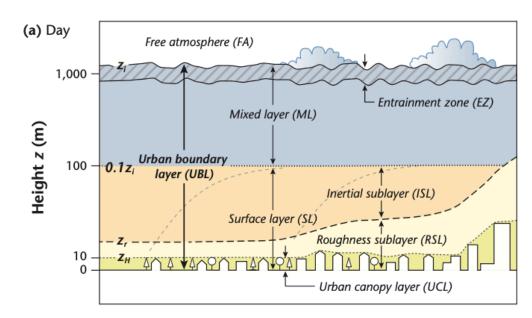

W. Urban modelling

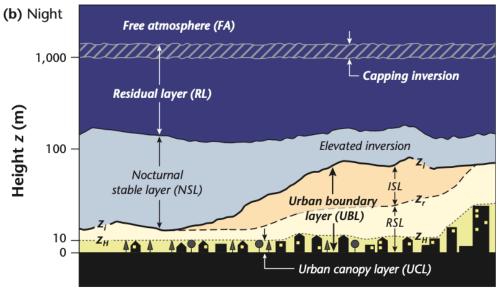
- Physical vs. numerical modelling, CFD
- Overview of numerical software
- Introduction to ENVI-met


Assist. Prof. Dolaana Khovalyg

EPFL Urban atmosphere: Atmospheric boundary layer

- **Troposphere:** the lowest layer of the *atmosphere*, it constitutes 80% of its mass.
- Atmospheric boundary layer (ABL): lowest layer of the troposphere. It is directly influenced by Earth's surface perturbations. It stretches 1-2 km, above is the free atmosphere.
- The height and the structure of the atmospheric boundary layer (ABL) vary between day and night.
- The atmospheric boundary layer above urban areas is called the urban boundary layer (UBL).
- The urban boundary layer (UBL) is higher than the rural boundary layer (RBL) because the interactions between the Earth and its atmosphere are stronger.




Source: https://bmeafl.com/the-project-proposal/

EPFL Urban atmosphere: Atmospheric boundary layer

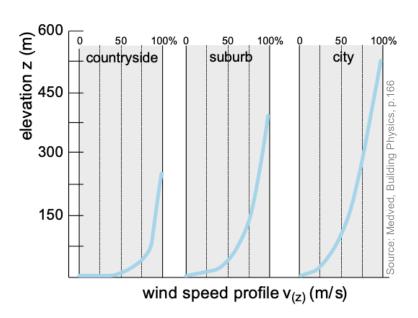
- The urban boundary layer is composed of two layers:
 - Surface layer (lower 10%)
 - Mixed layer (upper 90%)
- Surface layer: a layer with heat and mass exchanges between the Earth and its atmosphere. It is composed of 2 layers:
 - o Roughness sublayer (RSL) lower part affected by individuals elements, it is turbulent and 3D.
 - o **Inertial sublayer (ISL)** the *upper part* affected by assembles of individual elements, it varies mainly in the horizontal direction.
- Mixed layer: heat and mass exchange are dampened by turbulent motion; temperature, water vapor, wind speed are almost uniform with height

Assist. Prof. Dolaana Khovalyg

CIVIL-309 / LECTURE 02

EPFL Urban atmosphere: Wind speed

Wind speed at the surface is zero and increases exponentially with the height:

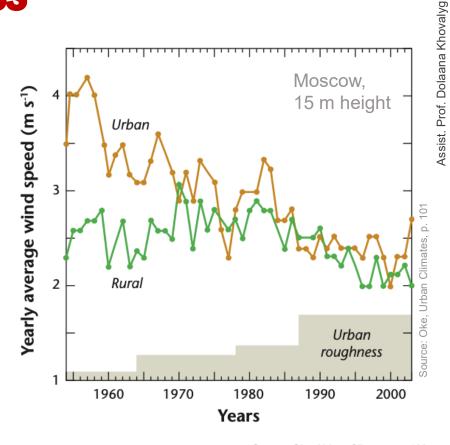

$$u(z) = \left(\frac{z}{z_r}\right)^{\alpha} \cdot u(z_r) \quad (2-1)$$

 z_r - reference height

 α - surface roughness coefficient or Hellmann exponent

 In urban areas, wind speeds are lower at lower heights because of the surface roughness effect

Surface type	Surface roughness
Water body	0.10
Meadow	0.13
Forest	0.20
Settlement	0.25
City with tall buildings	0.31


Horizontal wind

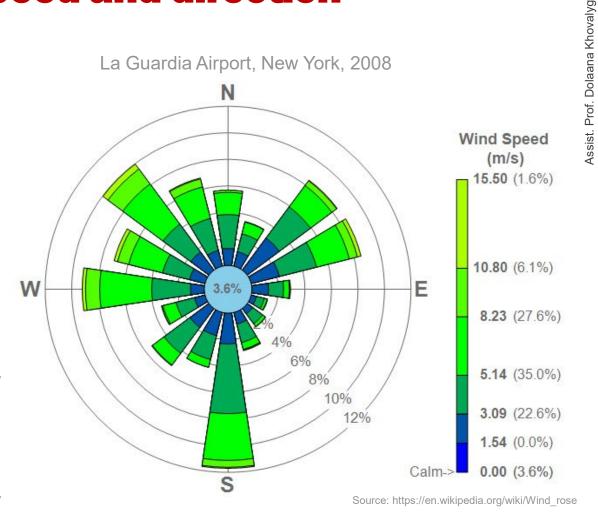
Source: Oke, Urban Climates, p.100

EPFL Urban atmosphere: Urban roughness

- Urban roughness is characterized by:
 - o The mean height of roughness elements z_H
 - \circ The roughness length z_0
 - The **Hellmann exponent** α
- **Roughness length** z_0 : height at which the wind speed theoretically becomes zero in the absence of wind-slowing obstacles.
- Two approaches to estimate the roughness parameters:
 - Micrometeorological approach: in-situ measurements of wind to solve the equation of the atmospheric boundary layer profile.
 - o **Morphometric approach:** computing the roughness parameters from the dimensions of the urban elements.

Source: Oke, Urban Climates, p. 103

Local climate zone type	Mean height of roughness elements z_H (m)	Roughness length z_0 (m)	Hellmann exponent α
Lawn	0.2 - 0.5	0.03 - 0.06	0.11 – 0.13
Compact low-rise	5 – 8	0.3 - 0.8	0.2 - 0.25
Compact mid-rise	7 – 14	0.7 – 1.5	0.23 - 0.27
Compact high-rise	11 – 20	0.8 - 2	0.26 - 0.29
High-rise	> 20	> 2	0.29 - 0.35


CIVIL-309 / LECTURE 02

EPFL Urban meteorology: Wind speed and direction

- Wind is driven by a pressure difference in the air due to different air density. It describes the movement of air.
- Wind speed or magnitude \overline{u} $(\frac{m}{s})$ is the resultant norm of the wind components u, v, w in the main direction

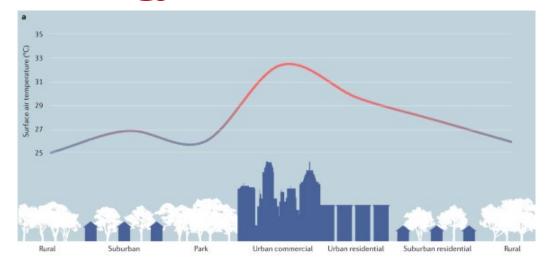
$$\bar{u} = \sqrt{u(x)^2 + v(y)^2 + w(z)^2}$$

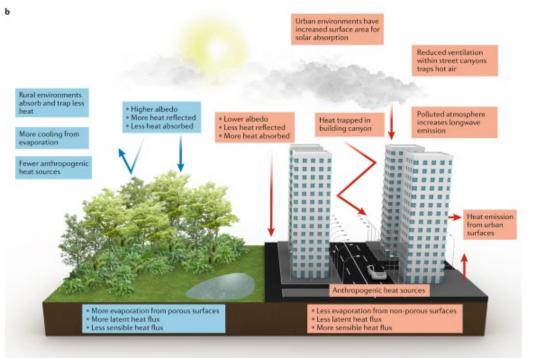
- The wind above the urban canopy is considered to be two-dimensional
- Wind rose a graphical representation of the repartition of the wind speeds according to the wind direction. It gives statistical information on the wind direction and allows to determine the predominant wind speeds
 - The wind direction is typically shown between 0 and 360° (North = 0°, East = 90°, South = 180°, West = 270°)

Wind animation in real time:

Weather Maps | Live Satellite & Weather Radar - meteoblue

Assist. Prof. Dolaana Khovalyg


EPFL

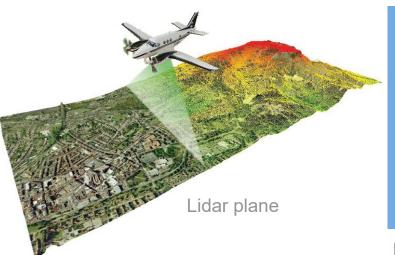

Urban atmosphere: Micrometeorology

- Meteorology science dealing with the atmosphere and its phenomena (varies on the spatial- and time- scale).
 - Spatial scales: micro, meso, synoptic, global
- Micrometeorology is applied at the *local* scale. It studies *small-scale* (< 1km) atmospheric processes, associated with the short-term (< 1h) interaction of the atmosphere and the Earth's surface.

• Micrometeorology considers:

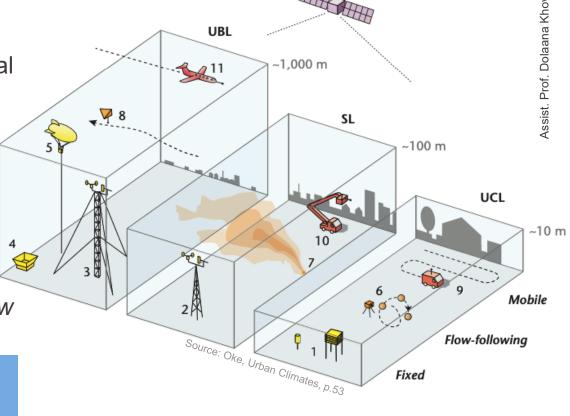
- Turbulence phenomena present at space scales of a few meters
- Surface transport and energy exchange
- Heat and humidity at the ground layer of the atmosphere

EPFL Urban meteorology: Measurements


Two types of measurements:

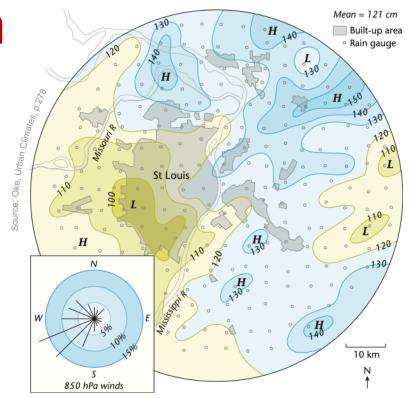
Long-term routine urban meteorological information (e.g., weather forecast)

Field campaigns
 (e.g., to answer specific research questions)


- They can use sensors that are used
 - In situ
 - Remotely (remote sensors)

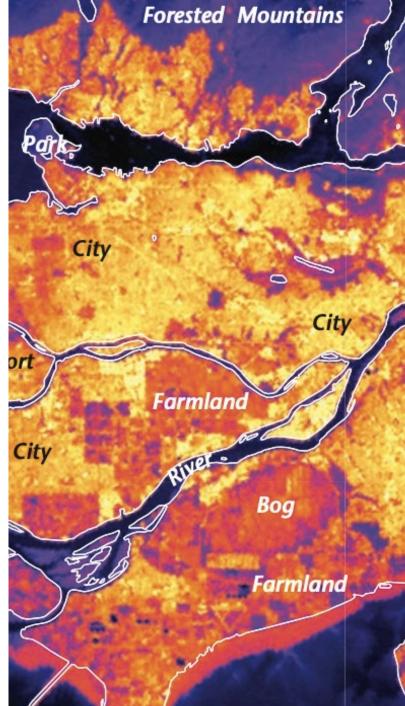
• ... and that can be fixed, mobile or following the flow

Portative weather station


Ground-based, aerial and remote-sensing platforms

- 1. Stevenson screen
- 2. Meteorological tower
- 3. Tall tower
- 4. Ground-base sensing platform
- 5. Tehered ballon with intrusments winched up and down
- 6. Small-scaled ballon traced by camera

- 7. Tracer release experiment
- 8. Tetroon ballon
- 9. Vehicle
- 10. Mobile crane platform
- 11. Helicopter, airplane and drone
- 12. Satellite remote-sensing


Urban meteorology: Precipitation

- Precipitation: amount of rainfall on the ground whether in the form of water drops, snow flakes, or droplets of mists
- It is expressed in water depth, snow water or equivalent of snow thickness in mm
- Precipitation is characterized by its intensity and its occurrence.
- Precipitation intensity is expressed in $\frac{mm}{h}$
- Precipitation is higher in some urban areas because cloud condensation is stimulated by the presence of <u>air pollutants</u>, the <u>urban</u> <u>boundary layer</u> structure and the presence of the <u>urban heat island</u>.

Characterization of the rain	Intensity of precipitation $(\frac{mm}{h})$
Very weak	< 0.25
Weak	0.25 - 1.0
Moderate	1.0 - 4.0
Heavy	4.0 - 16.0
Very heavy	16.0 – 50.0
Extreme	> 50.0

CONTENT:

Urban meteorology

- Structure of urban atmosphere
- Micrometeorology
- Winds speed and precipitation

Physical parameters

- Temperatures (air, surface, ground)
- Atmospheric pressure
- Water vapor, moist air, air humidity

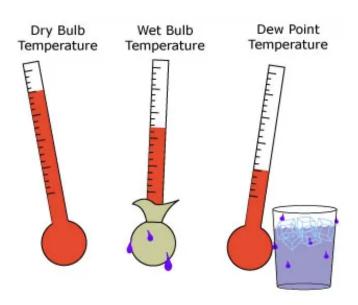
III. Case study parameters overview

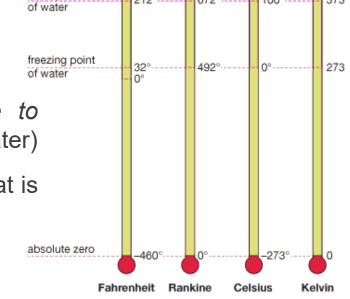
W. Urban modelling

- Physical vs. numerical modelling, CFD
- Overview of numerical software
- Introduction to ENVI-met

Overview of temperatures: Definitions

• Dry bulb temperature T_{db} (K or °C): the air property that is most commonly used.

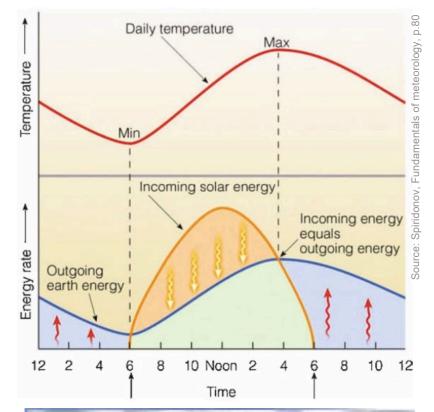

By referring to "air temperature", we normally refer to dry bulb temperature affected by the *moisture* present in the air.


- **Dewpoint temperature** T_d (K or °C): the temperature the air needs to be cooled to (at constant pressure) in order to achieve a relative humidity of 100%.
- Wet bulb temperature T_{wb} (K or °C): the *lowest* temperature that can be reached under given ambient conditions by the evaporation of water only.

Theoretical limit to human survival for more than a few hours is a wet-bulb temperature of 35°C.

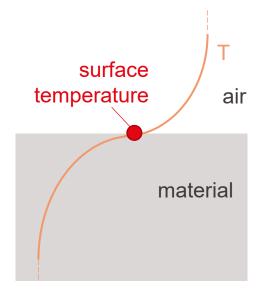
- Temperature scales: measurement of temperature relative to easily reproducible states (e.g., freezing and boiling points of water)
- Kelvin scale thermodynamic (absolute) temperature scale that is independent of properties of any substance or substances

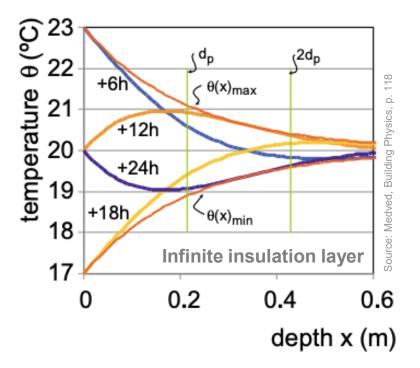
$$0^{\circ}C = 273.15 K$$



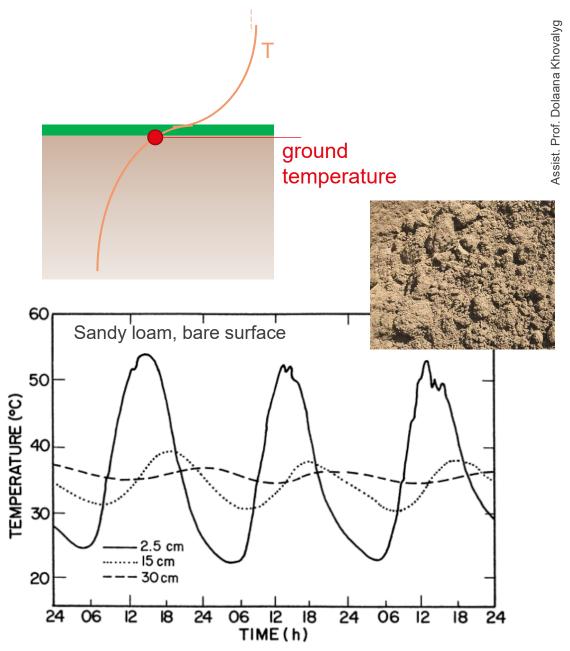
^{*} Important to pay attention when the absolute temperature in [K] is used

EPFL Air temperature

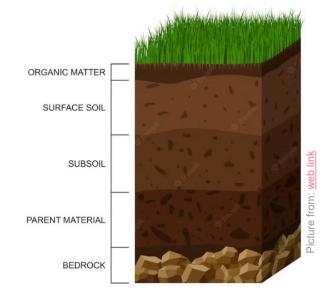

- Air temperature $T_a = T_{db}$ (K or °C): measure of the atmospheric heat content as a response to combined effects of:
 - absorbed solar radiation by the Earth's surfaces,
 - the vertical fluxes of sensible and latent heat released to the air due to convection
 - horizontal advection (movement) of warm and cold air masses
- As **air** temperature above ground is *highly affected* by solar radiation, it follows a daily and seasonal variation:
 - Minimum daily temperature: usually happens early morning, shortly after sunrise
 - Maximum daily temperature: 2-4 hours after the solar noon (with some delay compared to the maximum of solar radiation)
- Air temperature is *higher* closer to the surface and decreases with height. The distribution of temperature along the height varies locally with the local climate and topography.

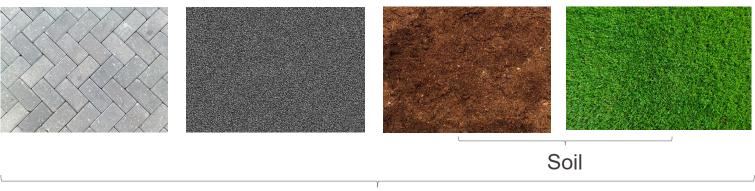


Surface temperature


- Surface temperature T_s (K or °C): temperature of a material (artificial matter) at its outer limit, at its surface in contact with another solid, liquid or gas.
 - Surface temperature is determined with the surface energy balance
 - o It depends of the **temperature** of *materials in contact* and the *solar radiation* reaching the surface.
 - o It follows a *daily* and *seasonal* variation delayed with respect to the *variation of solar variation*.
- Dynamics of surface temperature:
 - Maximum surface temperature is reached 1-2 hours after maximum solar radiation and minimum temperature - 1-2 hours before the first direct sunlight.
 - The amplitude of the variation depends on the material's properties.
 - Temperature on *both sides of the surface* varies exponentially. Air temperature could have 20 K difference over 1 mm next to a heated surface.

Ground temperature

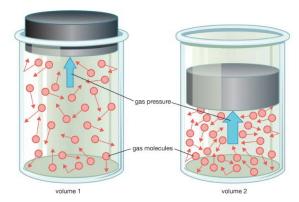

- Ground temperature next to the surface is affected by the physical processes of the upper environment
- Major difference between ground and other material temperature: only the outer surface temperature changes while the bottom temperature remains constant after a certain depth (the thickness of ground is considered infinite)
 - Ground temperature next to the surface varies daily and with season with time lag depend on solar radiation and air temperature
 - The ground thermal properties and deep temperature depend on soil composition and structure


Assist. Prof. Dolaana Khovalyg

EPFL Ground vs. Soil

- Ground is the surface of the Earth. Ground is used indifferently to describes the surface and the volume of matter below it (i.e. soil).
- Soil is a mixture of organic matter, minerals, gases, liquids and organisms. Soil is a three-state system composed of solids, liquids and gases. It is usually structured into layers of different composition.

- Ground surfaces can be:
 - Artificial: pavement
 - Natural: bare soil or soil with vegetation

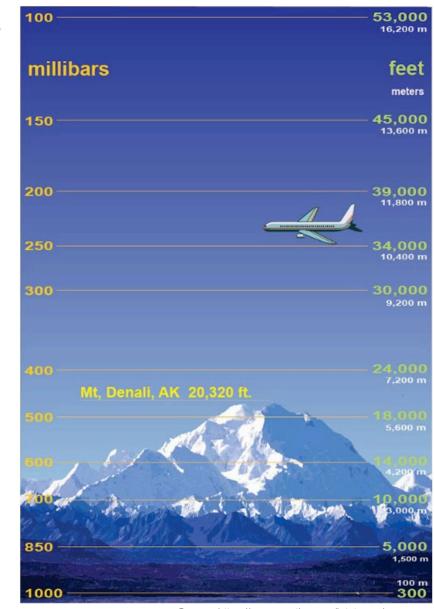

e from: web link

EPFL Atmospheric pressure

• Atmospheric pressure p_a ($Pa = \frac{N}{m^2}$): weight exerted by the overhead atmosphere on a unit area of surface

$$p_a = \frac{V_a \cdot \rho_a \cdot g}{A} \quad (2-2)$$

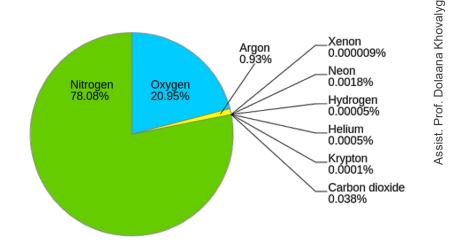
$$1 \ bar = 10^5 \ Pa$$
 (2-3)

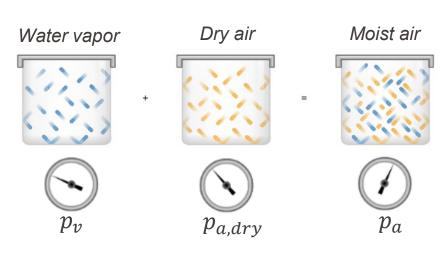


Source: https://www.britannica.com/science/pressure

- Air pressure decreases with the altitude (around $10 \frac{Pa}{m}$)
- Pressure is exerted equally in all directions
- Air (dry) pressure is related to air density and temperature through the Ideal Gas Law:

$$p_a \cdot V_a = n \cdot R \cdot T$$
 (2-4a) \Longrightarrow $p_a = \rho_a \cdot R_a \cdot T$ (2-4b)

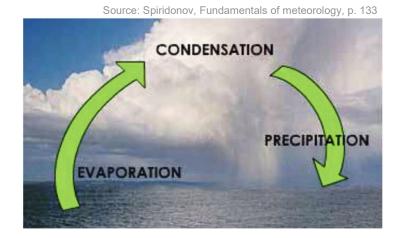

 R_a - specific gas constant for dry air (287.04 $\frac{J}{kg \cdot K}$)

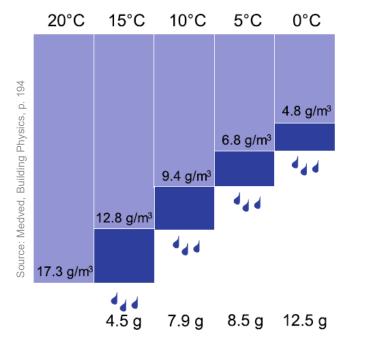


CIVIL-309 / LECTURE 02

EPFL Watervapor

- Standard air or barometric pressure p_a 1013 mbar (=101.3 kPa) is defined at sea level
- Air is a mixture of gases, predominantly N₂, O₂, Ar, and CO₂.
 Important to consider that air always contains water vapor
- Humidity or moisture the amount of water vapor present in the air
- Partial pressure of water vapor p_v (Pa): the pressure that would be exerted by water vapor if it occupied the same volume as the moist air on its own
 - Partial pressure of water vapor in the air p_v is between 0.1-12 kPa, depending on air temperature and humidity
- Moist air behaves according to **the Dalton's law** the total air pressure p_a is equal to the sum of the partial pressure p_i of the i-th gas present in the air (i.e., $p_{a,dry}$), and the partial pressure of water vapor p_v .





$$p_a = \sum_{i} p_i + p_v = p_{a,dry} + p_v$$
 (2-5)

EPFL Moist air

- Source of humidity: evaporation process from surfaces:
 - An <u>increase</u> in moisture caused by evaporation
 - A <u>decrease</u> in moisture caused by <u>condensation</u>
- Depending on the moisture ratio between the air and the surface and their respective temperatures, evaporation or condensation happens
- Air is saturated with water vapor when another water input would lead to condensation
- A state of **saturation** is achieved by moistening the air (by evaporation from the water surfaces, by spraying the water droplets) or by cooling it to the saturation temperature (= dew point temperature T_{dew})
- The water content in the air is highly dependent on air temperature. Hot air can hold more water-vapor molecules than cold air due to the increase in water-vapor saturation pressure $p_{v,sat}$ with an increasing air temperature

Quantity of liquid water condensing from 1m³ of saturated air as the air is cooled from 20°C to lower dew point temperature

CIVIL-309 / LECTURE 02

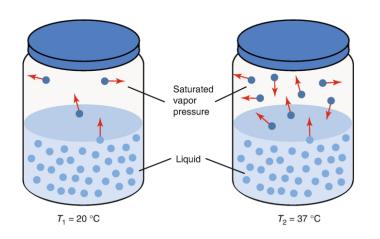
EPFL Psychrometric Properties: Moist Air

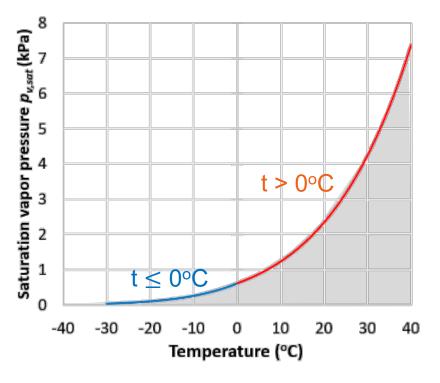
- Water vapor saturation pressure $p_{v,sat}$ (Pa) the pressure at which water vapour is in thermodynamic equilibrium with its condensed state.
 - At higher pressures $(p > p_{v,sat})$, water *condenses*
 - o At lower pressures ($p < p_{v,sat}$), water *evaporates*
 - o Relationship between $p_{v,sat}$ and T is approximated by the Clausius-Clapeyron eqn:

(2-6)
$$p_{v,sat} \approx p_o \cdot e^{\frac{L}{R_v} \cdot \left(\frac{1}{T_0} - \frac{1}{T}\right)} \begin{cases} R_v \text{ - water-vapor gas constant } (461 \ J/K \cdot kg), \\ T_o = 273.15 \ K, \ p_o = 611 \ Pa, \\ L - \text{ latent heat } (2.5 \cdot 10^6 \ J/kg \text{ for vaporization,} \\ \text{and } 2.83 \cdot 10^6 \ J/kg \text{ for sublimation)} \end{cases}$$

o Simplified $p_{v,sat}$ (Pa) formulas (t - air temperature in °C):

For t > 0°C:

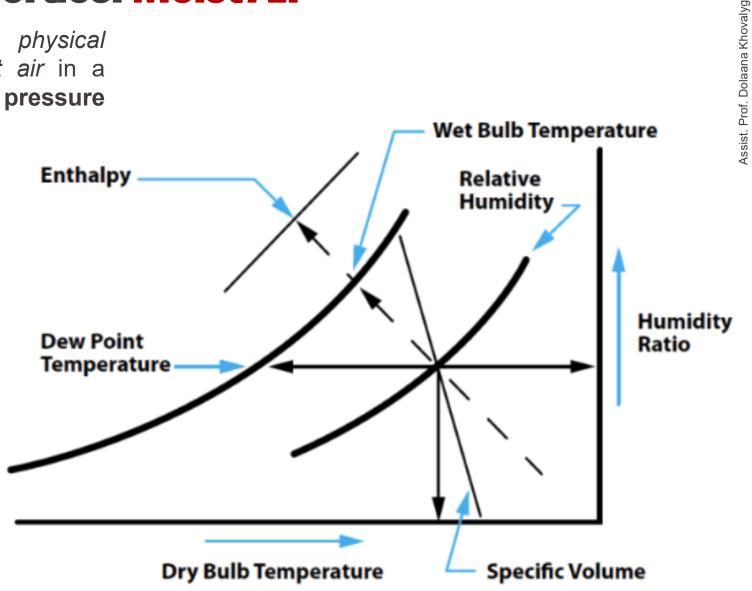

For
$$t \leq 0$$
°C:


$$p_{v,sat} = 611 \cdot e^{\frac{17.08 \cdot t}{234.18 + t}}$$
 (2-6a)

$$p_{v,sat} = 611 \cdot e^{\frac{22.44 \cdot t}{272.44 + t}}$$
 (2-6b)

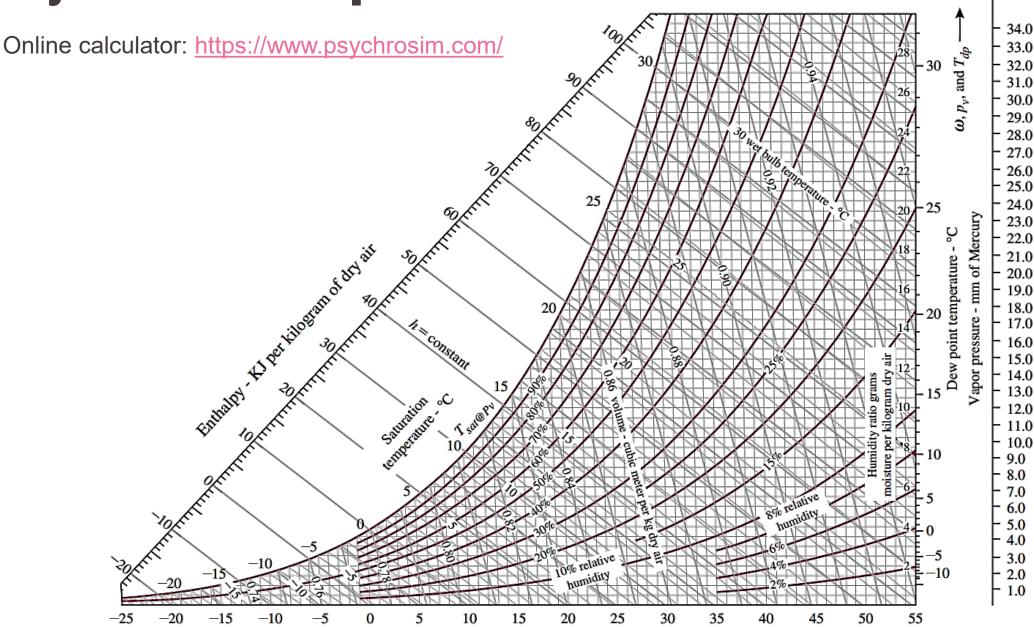
• Water vapor pressure deficit Δp_{vd} (Pa) is defined as how much more partial pressure can be taken up before saturation occurs:

$$\Delta p_{vd} = p_{v,sat} - p_v \quad (2-7)$$



EPFL Psychrometric Properties: Moist Air

 Psychrometric chart presents physical and thermal properties of moist air in a graphical form (at standard atm. pressure 101.3 kPa)


Parameters displayed:

- \circ Dry bulb temperature T_a
- \circ Wet bulb temperature $T_{wb,a}$
- Dew point temperature T_{dew}
- Specific enthalpy h_a (internal energy of air measured relative to a reference temperature 0 °C)
- Relative humidity φ or RH
- Absolute humidity x
- \circ Vapor pressure p_v
- Absolute humidity ranges:
 - in nature: $2-20 \,\mathrm{g}/kg$
 - o indoor air: 4-12 g/kg

EPFL

Psychrometric Properties: Moist Air

Dry bulb temperature - $^{\circ}$ C T (DBT) \longrightarrow

PSychrometric Properties: Air humidity

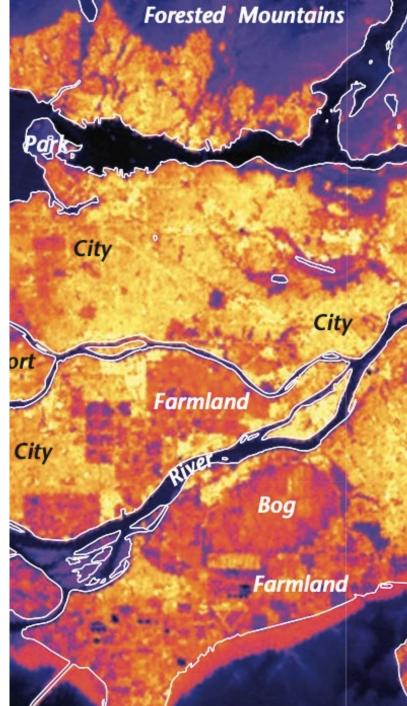
Specific humidity $q(\frac{kg}{kg})$: the mass ratio between the mass of water vapor and the mass of moist air (does not change with the change of temperature and pressure)

$$q = \frac{m_v}{m_a}$$
 (2-8a) $q = \frac{p_v \cdot M_v / M_{a,dry}}{p_a - (1 - M_v / M_{a,dry}) \cdot p_v} = 0.622 \frac{p_v}{p_a - 0.378 \cdot p_v}$ (2-8b)

O Absolute humidity $x(\frac{kg}{kg})$: mass of water vapor per 1 kg of dry air

$$x = \frac{m_v}{m_{a,dry}}$$
 (2-9a) $x = \frac{p_v \cdot M_v}{p_{a,dry} \cdot M_{a,dry}} = 0.622 \frac{p_v}{p_a - p_v}$ (2-9b)

Relative air humidity φ (- or %): ratio of the actual partial pressure of water vapour p_v to the water vapour saturation pressure $p_{v,sat}$ at a specific air temperature (often labeled as "RH", air is saturated at $\varphi = 1$ or 100%)


$$\boldsymbol{\varphi} = \frac{p_v}{p_{v,sat}} (-)$$
 (2-10a) $\boldsymbol{\varphi} = \frac{p_v}{p_{v,sat}} \cdot 100 (\%)$ (2-10b)

O Humidity by volume $v(\frac{kg}{m^3})$: water vapour mass per unit volume of air

$$v = \frac{p_v}{R_v \cdot (t + 273.15)} = \frac{p_{v,sat} \cdot \varphi}{462 \cdot (t + 273.15)}$$
 (2-11)

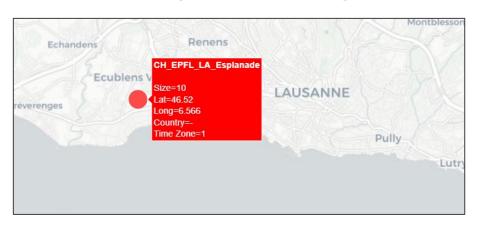
- t air temperature (${}^{o}C$),
- M_v molar mass of the water vapour (18 kg/kmol),
- $M_{a,dry}$ molar mass of dry air (28.9 kg/kmol),
- R_v gas constant of water vapor $(462 J/kg \cdot K)$

CONTENT:

Urban meteorology

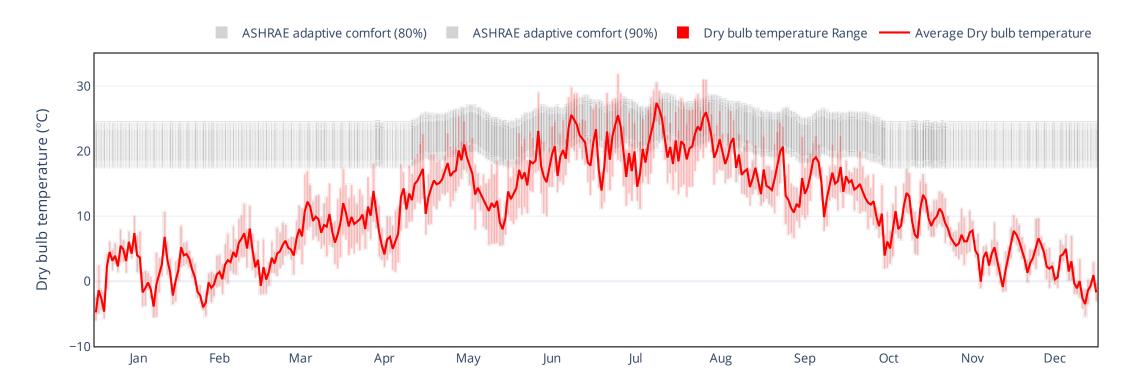
- Structure of urban atmosphere
- Micrometeorology
- Winds speed and precipitation

Physical parameters

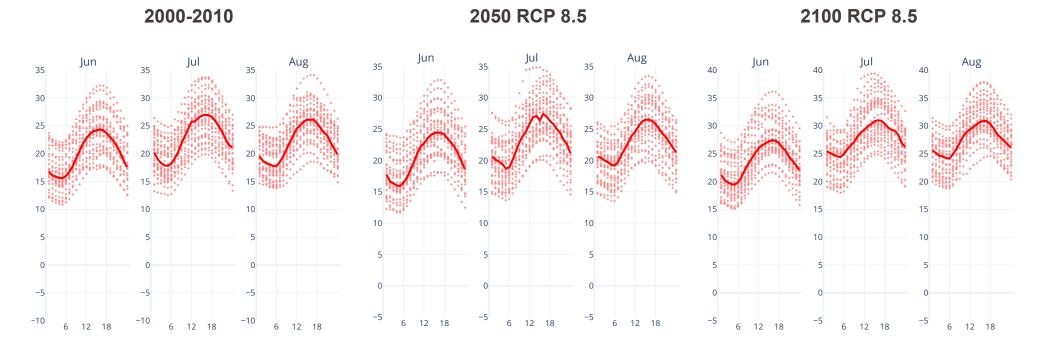

- Temperatures (air, surface, ground)
- Atmospheric pressure
- Water vapor, moist air, air humidity

Case study parameters overview

IV. Urban modelling

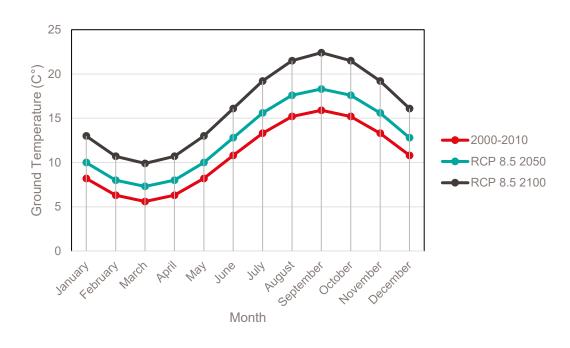

- Physical vs. numerical modelling, CFD
- Overview of numerical software
- Introduction to ENVI-met

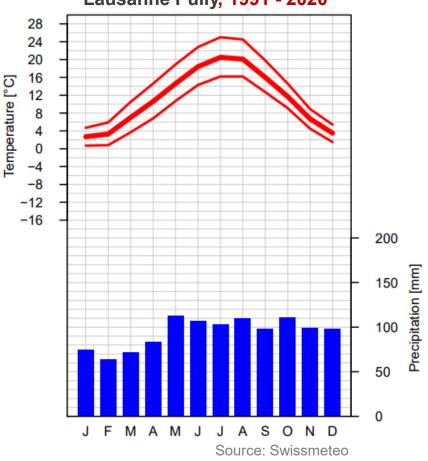
EPFL Case study site: Dry bulb (air) temperature


Measurement location: Esplanade

- Longitude: 6.566, Latitude: 46.52
- Elevation above sea level: 398 m
- o Period: 2000 2010, 2050 RCP 8.5, 2100 RCP 8.5
- Köppen–Geiger climate zone: Cfb.
- Marine west coast, warm summer.

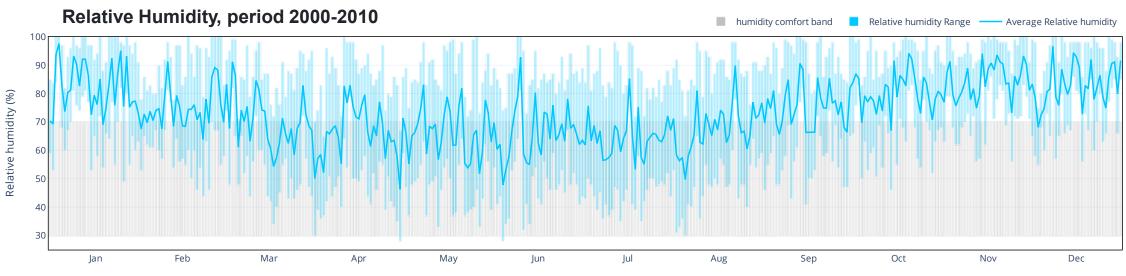
EPFL Case study site: Dry bulb (air) temperature

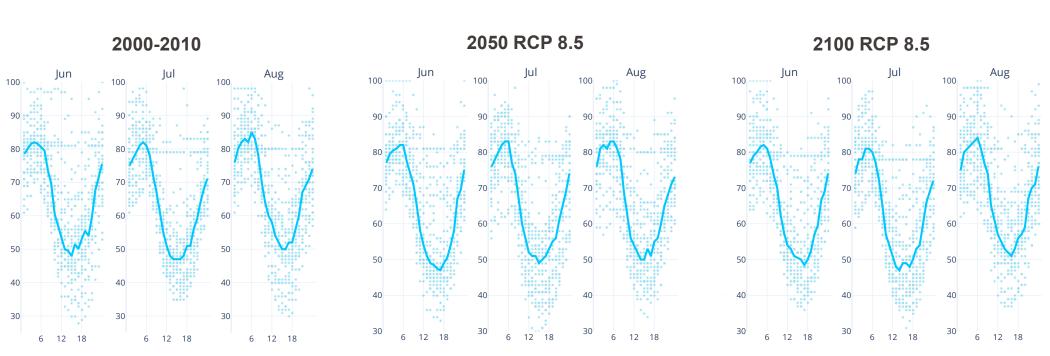

Air temperature variation during summertime (past and future projection)


Scenario	ario 2000 – 2010		2050 RCP 8.5			2100 RCP 8.5			
Month	June	July	August	June	July	August	June	July	August
Mean	18.8±4.6	20.7±4.7	19.8±4.3	21±4.4	23.4±4.5	22.9±4.1	24.3±4.4	28.0±4.4	27.7±4.1
Maximum	29.9	31.9	31.1	32.8	34.8	33.5	36.1	39.4	37.8
Minimum	8.0	11.0	11.5	11.7	13.7	13.6	15.1	18.1	18.8

EPFL Case study site: Ground temp. and Precipitation

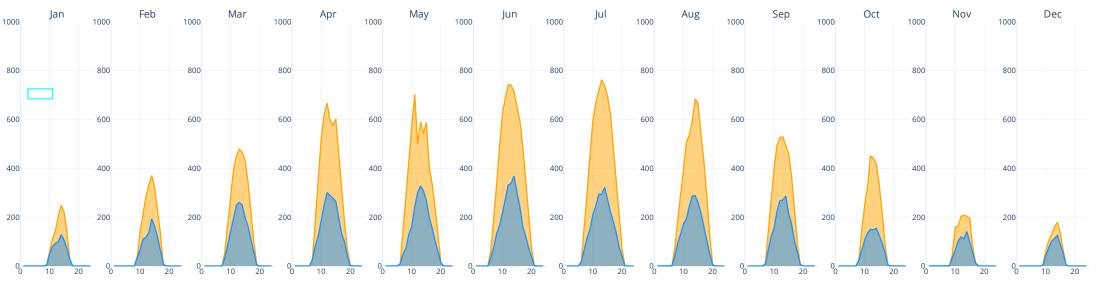
Monthly ground temperature in different scenarios



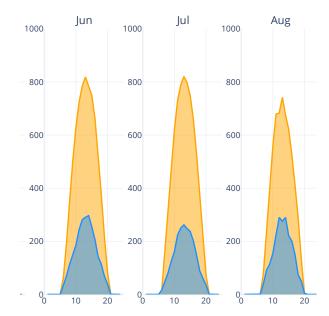

Monthly sum of precipitation depth Lausanne Pully, 1991 - 2020

CIVIL-309 / Lecture 02 / Case study site

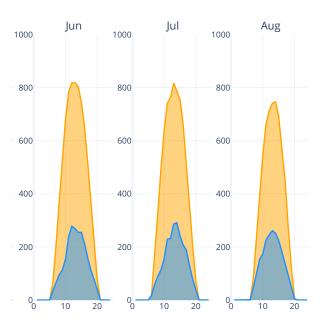
EPFL Case study site: Relative Humidity



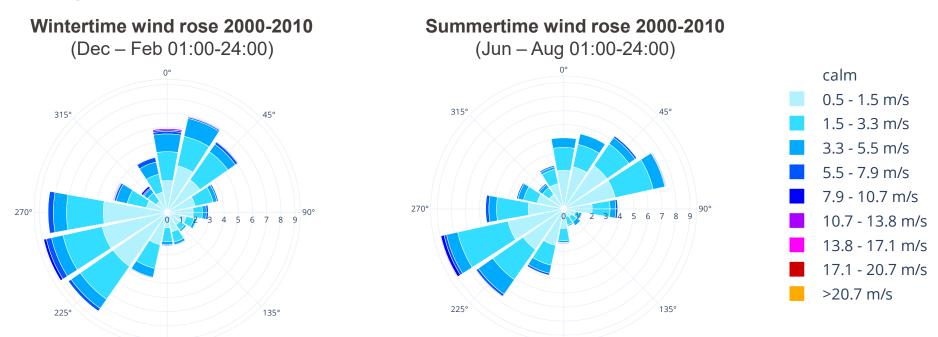
Dr Kun Lyu


Global Diffuse

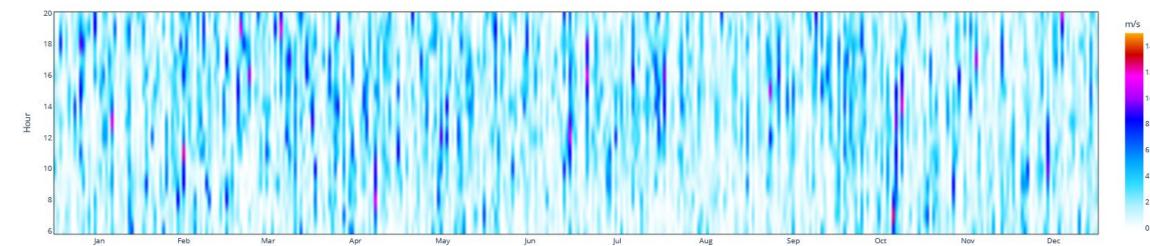
EPFL Case study site: Solar radiation


Global and Diffuse Horizontal Solar Radiation (Wh/m²), period 2000-2010

Global and Diffuse Horizontal Solar Radiation during summer (Wh/m²), future projection **RCP 8.5 2050**

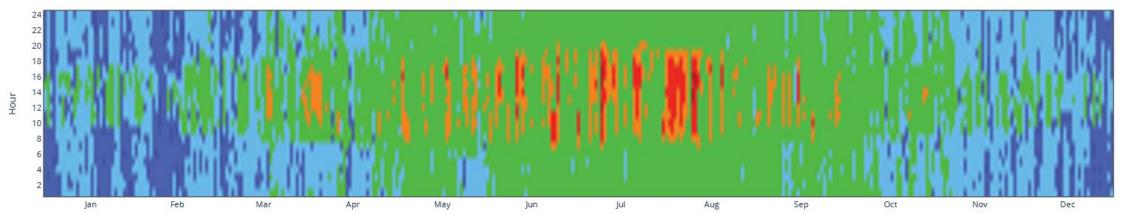


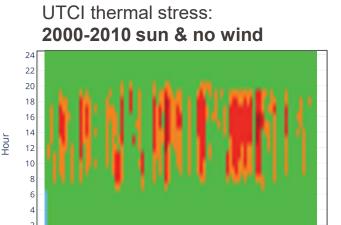
Global and Diffuse Horizontal Solar Radiation during summer (Wh/m²), future projection **RCP 8.5 2100**



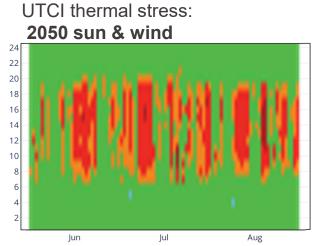
EPFL Case study site: Wind speed

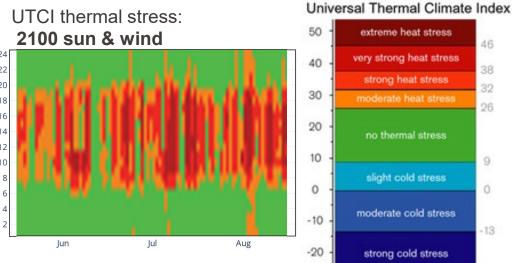
CIVIL-309 / Lecture 02 / Case study site




CIVIL-309 / Lecture 02 / Case study site

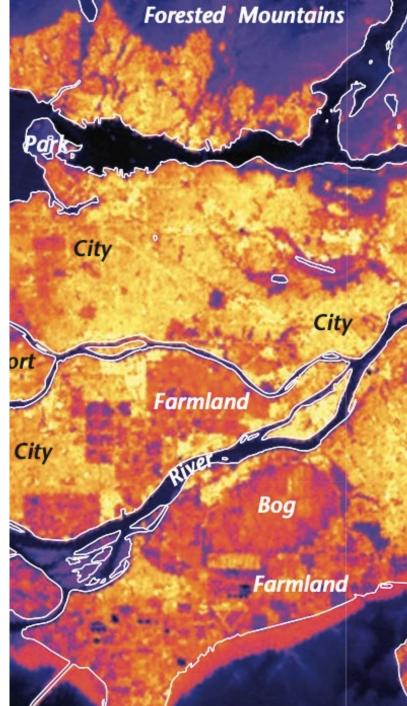
Case study site: Outdoor thermal comfort





Day

Aug



The **percentage of time** under **thermal stress** if we follow the **RCP 85** pathway:

- in **2050**: will increase by **10.6%** in June, **15.8%** in July, **20.5%** in August
- in **2100**: increase by **30.6%** in June, **42%** in July, and **57.1%** in August

CONTENT:

Urban meteorology

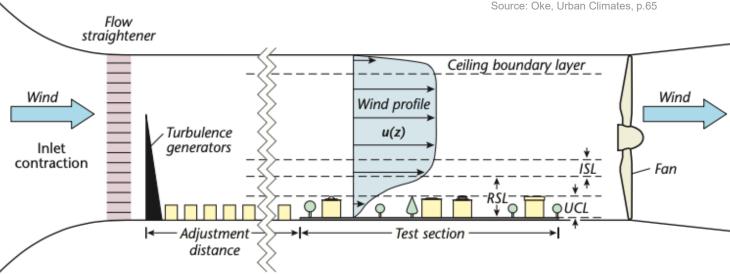
- Structure of urban atmosphere
- Micrometeorology
- Winds speed and precipitation

Physical parameters

- Temperatures (air, surface, ground)
- Atmospheric pressure
- Water vapor, moist air, air humidity

III. Case study parameters overview

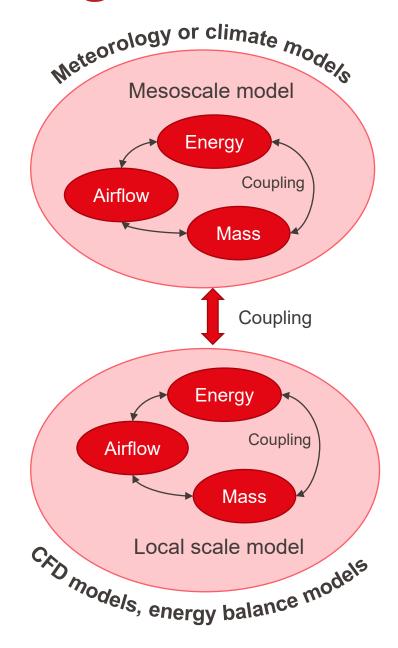
IV. Urban modelling


- Physical vs. numerical modelling, CFD
- Overview of numerical software
- Introduction to ENVI-met

CIVIL-309 / LECTURE 02

EPFL Urban modelling: Physical modelling

- A physical model is a surrogate of a real-world system that is <u>simplified</u> and <u>scaled</u>.
- Scaling can trigger modelling problems and the similitude is kept by conserving the geometric ratio and the physical adimensional numbers
- It can be built:
 - Indoors with controlled meteorological conditions
 - Outdoors under real meteorological conditions
- A wind tunnel, water flume or water tank can be used to model the urban airflow



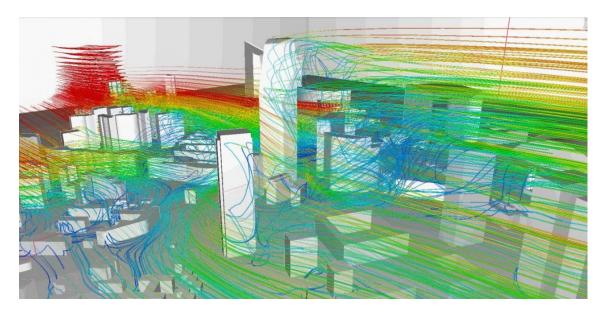
CIVIL-309 / LECTURE 02

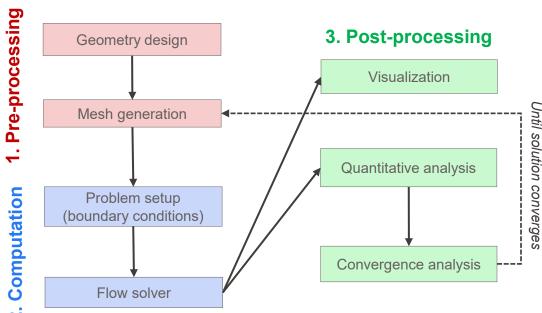
EPFL Urban modelling: Numerical modelling

- The numerical models have for object <u>air flow</u>, energy or mass and can be **coupled** together to simultaneously simulate these objects
- For the same object to model, different models exist depending on the <u>scale of modelling</u>. These models can be coupled together to encompass broader scales of the urban environment.
- Urban climate model: numerical model of the urban atmosphere and surface that evolve together in response to exchanges with the surface and atmosphere domain.
- The scales of numerical models:
 - o micro or local scale
 - mesoscale

■ CIVIL-309 / LECTURE 02

EPFL Urban modelling: Modelling choice


- Physical modelling is preferred in the case of studies related to a very specific location with a delimited research question.
- **Numerical modelling** is preferred in the case of *generic studies*, *parametric studies*, *optimization problems* and *predictions*.


Method	Advantages	Disadvantages		
Physical modelling	Provides experimental control and detailed observation of urban effects	Requires careful design to ensure similitude. Requires access to specialized facilities (e.g. flume, wind tunnel). Expensive. Requires testing against field observations or numerical results.		
Numerical modelling	Gives complete experimental control and can account for all climate scales. Can give predictions for an existing setup.	Assumptions can be restrictive, unrealistic or too theoretical. Requires testing against field observations to establish confidence. Output can be extensive.		

CIVIL-309 / LECTURE 02

EPFL Urban modelling: CFD

- Computational Fluid Dynamics (CFD) is a very common numerical method used to simulate flow dynamics. It covers a wide range of problems from fluid dynamics, aeroacoustics to thermo-physical problems.
- CFD relies on the finite volume method: the continuous flow is discretized in order to be numerically solved
 - 3 steps of CFD analysis: preprocessing, computation, and postprocessing
- CFD is an efficient tool to replace expensive and time-consuming experiments, that gives physical information on the entire computed domain and that is useful to perform parametric studies and optimization

Urban modelling tools: Overview

Kun Lyu

MESO-SCALE

MICRO-SCALE

CIVIL-309 / LECTURE 02

- Aims at atmospheric research and operational forecasting applications.
- Multiscale from large-eddy to global simulations.
- Applications include real-time weather forecasting, data assimilation, parameterized-physics research, regional climate simulations, air quality modeling, atmosphereocean coupling, and idealized simulations

Weather Research and Forecasting (WRF)

Australian Community Climate and Earth System Simulator (ACCESS)

Specialised Microclimate CFD Tool

Comprehensive model for urban surface-plant-air interactions, such as building physics, radiation exchange, and the cooling effects of vegetation, air pollutant dispersion

ENVI-met

- Paid
- Closed source
- GUI
- Neighbourhood scale

PALM4U

- Free
- Open source
- No GUI
- Neighbourhood and city scale

General purpose CFD for a wide range of physical phenomena, including chemical reactions, turbulence and heat transfer.

ANSYS FLUENT

OpenFOAM

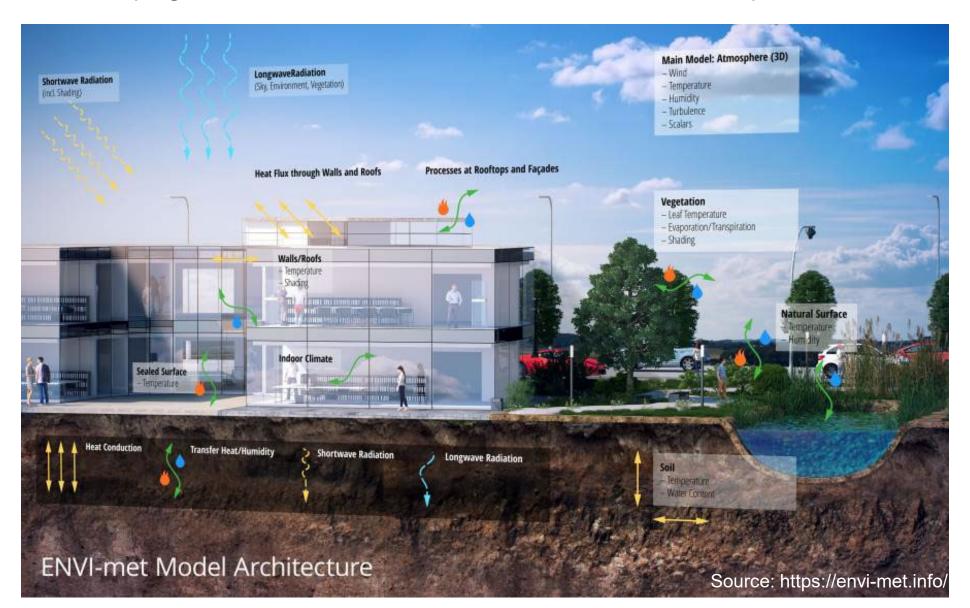
Other

CITYSIM

Energy performance and neighborhood.

CITY ENERGY ANALYST

Urban energy system planning and sustainability analysis

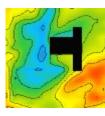

UMEP

Urban climate modelling and environmental prediction, for large scale application

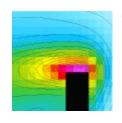
and more...

EPFL Urban modelling tools: **ENVI-met**

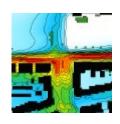
ENVI-met: prognostic model based on the fundamental laws of fluid dynamics and thermodynamics



EPFL ENVI-met: Models & Capacity


Atmospheric model

CFD wind
field: 3D CFD
model for each
grid and time step

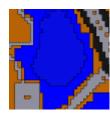

Air temperature & humidity: heat exchange between elements, advection and diffusion through air movement

Turbulence

Radiative fluxes

Pollutant dispersion

Soil model

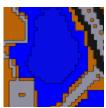

Surface & soil temperature: surface temperature of soil and artificial seal material down to -4m

Soil water content: water balance of ground based on Darcy's law

Vegetation water supply

Water bodies and pounds: radiation transmission and absorption, heat convection

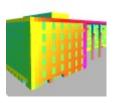
Vegetation model


3D plant geometry: simple and complex 3D plants

Foliage temperature: energy balance of leaf surface in relation to weather, plant physiology, water supply, etc.

Vegetation water supply

Water bodies and pounds: radiation transmission and absorption, heat convection


Atmospheric model

3D building geometry & Single walls

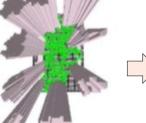
Detailed building materials

High resolution building physics

Building energy performan ce

Green roof and walls

EPFL ENVI-met: Simulation workflow





Design concept

- 2D scaled sketch:
- Digital geometry in other 3D modelling software

Material database

- · Create material and specify thermal properties (heat absorption, transmission, reflection. emissivity, specific heat, thermal conductivity, density).
- Create wall, roof constructions (3 layers)

Digitise 3D model

Create model area, import background pic from step 1, model the study site (buildings with materials assigned, ground, vegetation, etc.)

Meteorological condition

- Download weather data (e.g., epw file)
- · Create forcing files in forcing manager, inspect weather conditions of specific days and choose simulation period (drastic change of wind speed and direction can lead to simulation issues).

Simulation

- · Create SIMX file in envi-guide, specify simulation settings.
- In envi-core, run simulation.

Visualisation

 Data exploration in Leonardo, or QGIS, or import data - net CDF format to other data analytical tools (Python, R, excel...)

Thank you for your attention

Assist. Prof.
Dolaana Khovalyg
dolaana.khovalyg@epfl.ch

Dr. Kun Lyu kun.lyu@epfl.ch